Abstract
A cryo-quenched 70 wt % Fe-15 wt% Cr-15 wt% Ni single-crystal alloy with fcc (face centered cubic), bcc (body centered cubic), and hcp (hexagonal close packed) phases was implanted with 200 keV He+ ions up to 2 × 1017 ions·cm−2 at 773 K. Surface-relief features were observed subsequent to the He+ ion implantation, and transmission electron microscopy was used to characterize both the surface relief properties and the details of associated “swelling effects” arising cumulatively from the austenitic-to-martensitic phase transformation and helium ion-induced bubble evolution in the single-crystal ternary alloy. The bubble size in the bcc phase was found to be larger than that in the fcc phase, while the bubble density in the bcc phase was correspondingly lower. The phase boundaries with misfit dislocations formed during the martensitic transformation and reversion processes served as helium traps that dispersed the helium bubble distribution. Swelling caused by the phase transformation in the alloy was dominant compared to that caused by helium bubble formation due to the limited depth of the helium ion implantation. The detailed morphology of helium bubbles formed in the bcc, hcp, and fcc phases were compared and correlated with the characters of each phase. The helium diffusion coefficient under irradiation at 773 K in the bcc phase was much higher (i.e., by several orders of magnitude) than that in the fcc phase and led to faster bubble growth. Moreover, the misfit phase boundaries were shown to be effective sites for the diffusion of helium atoms. This feature may be considered to be a desirable property for improving the radiation tolerance of the subject, ternary alloy.
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献