Landscape Analysis of Cobalt Mining Activities from 2009 to 2021 Using Very High Resolution Satellite Data (Democratic Republic of the Congo)

Author:

Brown Chloe,Boyd Doreen S.ORCID,Kara Siddharth

Abstract

The cobalt mining sector is well positioned to be a key contributor in determining the success of the Democratic Republic of the Congo (DRC) in meeting the Sustainable Development Goals (SDGs) by 2030. Despite the important contribution to the DRC’s economy, the rapid expansion of mining operations has resulted in major social, health, and environmental impacts. The objective of this study was to quantitatively assess the cumulative impact of mining activities on the landscape of a prominent cobalt mining area in the DRC. To achieve this, an object-based method, employing a support vector machine (SVM) classifier, was used to map land cover across the city of Kolwezi and the surrounding mining areas, where long-term mining activity has dramatically altered the landscape. The research used very high resolution (VHR) satellite imagery (2009, 2014, 2019, 2021) to map the spatial distribution of land cover and land cover change, as well as analyse the spatial relationship between land cover classes and visually identified mine features, from 2009 to 2021. Results from the object-based SVM land cover classification produced an overall accuracy of 85.2–90.4% across the time series. Between 2009 and 2021, land cover change accounted to: rooftops increasing by 147.2% (+7.7 km2); impervious surface increasing by 104.7% (+3.35 km2); bare land increasing by 85.4% (+33.81 km2); exposed rock increasing by 56.2% (+27.46 km2); trees decreasing by 4.5% (−0.34 km2); shrub decreasing by 38.4% (−26.04 km2); grass and cultivated land decreasing by 27.1% (−45.65 km2); and water decreasing by 34.6% (−3.28 km2). The co-location of key land cover classes and visually identified mine features exposed areas of potential environmental pollution, with 91.6% of identified water situated within a 1 km radius of a mine feature, and vulnerable populations, with 71.6% of built-up areas (rooftop and impervious surface class combined) situated within a 1 km radius of a mine feature. Assessing land cover patterns over time and the interplay between mine features and the landscape structure allowed the study to amplify the findings of localised on-the-ground research, presenting an alternative viewpoint to quantify the true scale and impact of cobalt mining in the DRC. Filling geospatial data gaps and examining the present and past trends in cobalt mining is critical for informing and managing the sustainable growth and development of the DRC’s mining sector.

Funder

EPSRC

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference82 articles.

1. Framework Convention on Climate Change. Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement. Glasgow Climate Pacthttps://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf

2. Framework Convention on Climate Change. Adoption of the Paris Agreement;Proceedings of the 21st Conference of the Parties,2015

3. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems,2019

4. Climate Change 2021 – The Physical Science Basis

5. Climate Change 2022: Impacts, Adaptation, and Vulnerability,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3