Chemoproteomics Reveals USP5 (Ubiquitin Carboxyl-Terminal Hydrolase 5) as Promising Target of the Marine Polyketide Gracilioether A

Author:

Capuano Alessandra12,D’Urso Gilda1ORCID,Aliberti Michela12,Ruggiero Dafne1,Terracciano Stefania1,Festa Carmen3ORCID,Tosco Alessandra1ORCID,Chini Maria Giovanna4,Lauro Gianluigi1ORCID,Bifulco Giuseppe1,Casapullo Agostino1ORCID

Affiliation:

1. Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy

2. PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Salerno, Italy

3. Dipartimento di Farmacia, University of Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy

4. Dipartimento di Bioscienze e Territorio, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy

Abstract

Mass spectrometry-based chemical proteomic approaches using limited proteolysis have become a powerful tool for the identification and analysis of the interactions between a small molecule (SM) and its protein target(s). Gracilioether A (GeA) is a polyketide isolated from a marine sponge, for which we aimed to trace the interactome using this strategy. DARTS (Drug Affinity Responsive Target Stability) and t-LiP-MS (targeted-Limited Proteolysis-Mass Spectrometry) represented the main techniques used in this study. DARTS was applied on HeLa cell lysate for the identification of the GeA target proteins, and t-LiP-MS was employed to investigate the protein’s regions involved in the binding with GeA. The results were complemented through the use of binding studies using Surface Plasmon Resonance (SPR) and in silico molecular docking experiments. Ubiquitin carboxyl-terminal hydrolase 5 (USP5) was identified as a promising target of GeA, and the interaction profile of the USP5-GeA complex was explained. USP5 is an enzyme involved in the pathway of protein metabolism through the disassembly of the polyubiquitin chains on degraded proteins into ubiquitin monomers. This activity is connected to different cellular functions concerning the maintenance of chromatin structure and receptors and the degradation of abnormal proteins and cancerogenic progression. On this basis, this structural information opens the way to following studies focused on the definition of the biological potential of Gracilioether A and the rational development of novel USP5 inhibitors based on a new structural skeleton.

Funder

University of Salerno

Ministero dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3