Effect of Calcination Temperature on the Physicochemical Properties and Electrochemical Performance of FeVO4 as an Anode for Lithium-Ion Batteries

Author:

Ghani FaizanORCID,An KunsikORCID,Lee DongjinORCID

Abstract

Several electrode materials have been developed to provide high energy density and a long calendar life at a low cost for lithium-ion batteries (LIBs). Iron (III) vanadate (FeVO4), a semiconductor material that follows insertion/extraction chemistry with a redox reaction and provides high theoretical capacity, is an auspicious choice of anode material for LIBs. The correlation is investigated between calcination temperatures, morphology, particle size, physicochemical properties, and their effect on the electrochemical performance of FeVO4 under different binders. The crystallite size, particle size, and tap density increase while the specific surface area (SBET) decreases upon increasing the calcination temperature (500 °C, 600 °C, and 700 °C). The specific capacities are reduced by increasing the calcination temperature and particle size. Furthermore, FeVO4 fabricated with different binders (35 wt.% PAA and 5 wt.% PVDF) and their electrochemical performance for LIBs was explored regarding the effectiveness of the PAA binder. FV500 (PAA and PVDF) initially delivered higher discharge/charge capacities of 1046.23/771.692 mAhg−1 and 1051.21/661.849 mAhg−1 compared to FV600 and FV700 at the current densities of 100 mAg−1, respectively. The intrinsic defects and presence of oxygen vacancy along with high surface area and smaller particle sizes efficiently enhanced the ionic and electronic conductivities and delivered high discharge/charge capacities for FeVO4 as an anode for LIBs.

Funder

Konkuk University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3