Effect of Calcination Temperature on the Structural and Electrochemical Behaviour of Li-Based Cathode for Intermediate-Temperature SOFC Application

Author:

Mansur Sumarni1ORCID,Baharuddin Nurul Akidah1ORCID,Wan Yusoff Wan Nor Anasuhah1,Abd Aziz Azreen Junaida1,Somalu Mahendra Rao1ORCID

Affiliation:

1. Solid Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia

Abstract

A new strategy to reduce the operating temperature of the solid oxide fuel cell (SOFC) is needed to foster the progress of developing high-performance and stable SOFC as a solution to the thermal stress and degradation of the cell components induced by high-temperature SOFC. The use of lithium (Li) as a cathode can increase the cell’s efficiency, as it allows for faster ion transport and a higher reaction rate. This study presents an attractive approach to using a Li-based cathode by combining Li with cobalt (Co) to form LiCo0.6Sr0.4O2 (LCSO). In this work, a precursor consisting of Li, Co, and strontium (Sr) was prepared via the glycine-nitrate combustion method. The precursor was calcined at two different calcination temperatures (800 and 900 °C) prior to ink formulation and symmetrical cell fabrication in order to study the effect of calcination temperature on the structural and electrochemical behaviour of a Li-based cathode. The precursor LCSO powder was characterised using X-ray crystallography (XRD) to determine the crystal structure and composition of the developed LCSO. The electrochemical performance of the fabricated symmetrical cell was tested using electrochemical impedance spectroscopy (EIS) to obtain the cell’s resistance information, which is related to the cell’s ionic and electronic conductivity. SDC electrolyte with LCSO calcined at 800 °C has a higher crystallinity percentage and a more porous structure compared to LCSO calcined at 900 °C. The porous structure enhanced the electrochemical performance of the cell, where the symmetrical cell has the highest conductivity (0.038 Scm−1) with the lowest activation energy (0.43 eV). The symmetrical cell was also able to achieve 2.89 Ω cm2 of area-specific resistance (ASR) at 800 °C of operating temperature. In conclusion, the SDC electrolyte with LCSO calcined at 800 °C is the promising cathode material for SOFC applications. The result of this study can benefit the SOFC field of research, especially in the development of intermediate temperature-SOFC.

Funder

Universiti Kebangsaan Malaysia

Dana Pecutan Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3