Research on Longitudinal Collapse Mode and Control of the Continuous Bridge under Strong Seismic Excitations

Author:

Li YaleORCID,Zong Zhouhong,Yang Bingwen,Lin Yuanzheng,Lin Jin

Abstract

Bridge collapse events are common in major earthquakes around the world, among which continuous girder bridges are the most involved. In order to explore the collapse mechanism of a continuous girder bridge in an earthquake, the collapse mode of a two-span continuous girder bridge specimen which had been studied by the shaking table test was analyzed. Then, on the basis of the conventional plate rubber bearing system, the collapse control strategies which were high damping rubber bearing, fluid viscous damper, lock-up clutch control methods were discussed. It is found that high damping rubber bearing can delay the collapse time but the collapse mode remains the same; lock-up clutch has the best displacement control effect for the superstructure, but its energy consumption performance is not as good as that of a fluid viscous damper; high damping rubber bearing is quite suitable for protecting the substructure under short-period ground motion to avoid the bridge collapse caused by the failure of piers; fluid viscous damper and lock-up clutch are suitable for protecting the superstructure under long ground seismic motion to avoid the bridge non-use resulted from girder lowering; three collapse control methods can improve the anti-collapse ability of the bridge specimen, although no matter which control method is used, the bridge specimen may still collapse under strong earthquakes, but the target of postponing collapse time can be realized by means of various effective control methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3