Research for Nonlinear Model Predictive Controls to Laterally Control Unmanned Vehicle Trajectory Tracking

Author:

Zhao KegangORCID,Wang Chengxia,Xiao Guoquan,Li Haolin,Ye Jie,Liu Yanwei

Abstract

The autonomous driving is rapid developing recently and model predictive controls (MPCs) have been widely used in unmanned vehicle trajectory tracking. MPCs are advantageous because of their predictive modeling, rolling optimization, and feedback correction. In recent years, most studies on unmanned vehicle trajectory tracking have used only linear model predictive controls to solve MPC algorithm shortcomings in real time. Previous studies have not investigated problems under conditions where speeds are too fast or trajectory curvatures change rapidly, because of the poor accuracy of approximate linearization. A nonlinear model predictive control optimization algorithm based on the collocation method is proposed, which can reduce calculation load. The algorithm aims to reduce trajectory tracking errors while ensuring real-time performance. Monte Carlo simulations of the uncertain systems are carried out to analyze the robustness of the algorithm. Hardware-in-the-loop simulation and actual vehicle experiments were also conducted. Experiment results show that under i7-8700, the calculation time is less than 100 ms, and the mean square error of the lateral deviation is maintained at 10−3 m2, which proves the proposed algorithm can meet the requirement of real time and accuracy in some particular situations. The unmanned vehicle trajectory tracking method provided in this article can meet the needs of real-time control.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An accurate trajectory tracking method for low-speed unmanned vehicles based on model predictive control;Scientific Reports;2024-05-10

2. UAV Air Combat Situation Assessment Method based on Improved Clustering and Self-Learning Network;Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering;2023-10-20

3. FT-TF: A 4D Long-Term Flight Trajectory Prediction Method Based on Transformer;2023 42nd Chinese Control Conference (CCC);2023-07-24

4. Model Predictive Trajectory Tracking Based on Extended Kalman Filter;2023 2nd Conference on Fully Actuated System Theory and Applications (CFASTA);2023-07-14

5. Model Predictive Control and Its Role in Biomedical Therapeutic Automation: A Brief Review;Applied System Innovation;2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3