Abstract
Rain attenuation becomes significant to degrade the earth-space or terrestrial radio link’s signal-to-noise ratio (SNR). So, to maintain the desired SNR level, with the help of fade mitigation techniques (FMTs), it needs to control transmitted signals power considering the expected rainfall. However, since the rain event is a random phenomenon, the rain attenuation that may be experienced by a specific link is difficult to estimate. Many empirical, physical, and compound nature-based models exist in the literature to predict the expected rain attenuation. Furthermore, many optimizations and decision-making functions have become simpler since the development of the learning-assisted (LA) technique. In this work, the LA rain attenuation (LARA) model was classified based on input parameters. Besides, for comparative analysis, each of the supported frequency components of LARA models were tabulated, and an accurate contribution of each model was identified. In contrast to all the currently available LARA models, the accuracy and correlation of input-output parameters are presented. Additionally, it summarizes and discusses open research issues and challenges.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献