ANN_ITU: Predicting rain attenuation with a hybrid model for earth-space links

Author:

Xu Dongyu1,Wang Zhaodi1ORCID,Leng Biao1

Affiliation:

1. School of Computer Science and Engineering, Beihang University, Beijing, China

Abstract

Rain attenuation prediction of earth-space links is of vital significance for the application and development of satellite communication. Recently, most rain attenuation prediction methods are based on semi-empirical models or data-driven models, the former suffering from incompleteness problem, the latter faced with limited performance due to scarce data. In order to realize higher rain attenuation prediction performance, we propose a novel hybrid model ANN_ITU that combines advantages of the semi-empirical model and the artificial neural network. In ANN_ITU framework, the semi-empirical model ITU-R P.618-12 is leveraged to predict rain attenuation, and a six-layer artificial neural network is utilized to correct the rain attenuation predicted by ITU-R P.618-12, thus generating the final rain attenuation value. What’s more, we also present theories of two machine-learning based rain attenuation prediction methods, namely, random forest and support vector regression. Last but not least, we expound on processes of DBSG3 dataset filtering and data preprocessing. Experiments on DBSG3 dataset are carried out. Experimental results demonstrate that the hybrid ANN_ITU algorithm outperforms purely semi-empirical algorithms and data-driven algorithms. The evaluation indexes mean value, standard deviation, and root mean square value are 0.0355%, 19.63%, and 19.63%, respectively, which prove the effectiveness and precision of our rain attenuation prediction model ANN_ITU.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3