Parametric and Nonparametric PID Controller Tuning Method for Integrating Processes Based on Magnitude Optimum

Author:

Kos TomažORCID,Huba MikulášORCID,Vrančić Damir

Abstract

Integrating systems are frequently encountered in power plants, paper-production plants, storage tanks, distillation columns, chemical reactors, and the oil industry. Due to the open-loop instability that leads to an unbounded output from a bounded input, the efficient control of integrating systems remains a challenging task. Many researchers have addressed the control of integrating processes: Some solutions are based on a single closed-loop controller, while others employ more complex control structures. However, it is difficult to find one solution requiring only a simple tuning procedure for the process. This is the advantage of the magnitude optimum multiple integration (MOMI) tuning method. In this paper, we propose an extension of the MOMI tuning method for integrating processes, controlled with a two-degrees-of-freedom (2-DOF) proportional–integral–derivative (PID) controller. This extension allows for calculations of the controller parameters from either time domain measurements or from a process transfer function of an arbitrary order with a time-delay, when both approaches are exactly equivalent. The user has the option to emphasise disturbance-rejection or tracking with the reference weighting factor b or apply two different reference filters for the best overall response. The proposed extension was also compared to other tuning methods for the control of integrating processes and tested on a charge-amplifier drift-compensation system. All closed-loop responses were relatively fast and stable, all in accordance with the magnitude optimum criteria.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3