Advancement of Roll-Gap Control to Curb the Camber in Heavy-Plate Rolling Mills

Author:

Radionov Andrey A.,Gasiyarov Vadim R.,Karandaev Alexander S.,Loginov Boris M.,Khramshin Vadim R.ORCID

Abstract

The quality of steelwork products depends on the geometric precision of flat products. Heavy-plate rolling mills produce plates for large-diameter pipes and for use in shipbuilding, mechanical engineering, and construction. This is why the precision requirements are so stringent. Today’s Mills 5000 produce flat products of up to 5 m in width; the operation of these units shows ‘camber’ defects and axial shift of the roll at the stand exit point. This induces greater loss of metal due to edge trimming and involves a higher risk of accidents. These defects mainly occur due to the asymmetry in the roll gap, which is in turn caused by their misalignment in rolling. As a result, the feed varies in gauge, and the strip moves unevenly. The paper’s key contribution consists in theoretical and experimental substantiation and development of a set of control methods intended to address roll-gap asymmetry. The methods effectively compensate for the asymmetry resulting from the “inherited” wedge, which preexists before the strip enters the stand. They also compensate for the “ongoing” roll misalignment that is caused by the difference in force on the opposite side of the stand during rolling. This comprehensive approach to addressing camber and axial displacement of the feed has not been found in other sources. This paper presents a RAC controller connection diagram that ensures that the roll gap is even across the feed. The paper notes the shortcomings of the design configuration of the controller and shows how it could be improved. The authors have developed a predictive roll-gap asymmetry adjustment method that compensates for the deviations in gauge during the inter-passage pauses. They have also developed a method to control gap misalignment during rolling. The paper showcases the feasibility of a proportional-derivative RAC. The methods have been tested by mathematical modeling and experimentally. The paper further shows oscillograms sampled at Mill 5000 after implementing the developed solutions. Tests confirm far better precision of the screw-down mechanisms on the opposite sides of the stand. This reduces the variation in gauge across the feed and thus curbs the camber defect. As a result, the geometry of the flat improves, and less metal is lost in trimming. The paper further discusses how the RAC controller interacts with the automatic gauge control system. The conclusion is that these systems do not interfere with each other. The developed systems have proceeded to pilot testing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3