Microplastic Particles and Fibers in Seasonal Ice of the Northern Baltic Sea

Author:

Reineccius Janika1ORCID,Heck Mareike2,Waniek Joanna J.1ORCID

Affiliation:

1. Leibniz Institute for Baltic Sea Research, Warnemünde, Seestraße 15, 18119 Rostock, Germany

2. Institute of Biosciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany

Abstract

Microplastic pollution is a pervasive issue, with remarkably high concentrations observed even in the most remote locations such as Arctic sea ice and snow. The reason for such large microplastic abundances in sea ice is still speculative and applies mainly to saline or freshwater conditions. In this study, we investigated seasonal ice core samples collected in March 2021 from the northern Baltic Sea (Gulf of Bothnia) for their microplastic distributions. The Baltic Sea is characterized by low salinity and can be ice-covered for up to six months annually. Microplastics were analyzed in the melted ice samples using an adsorption technique and Raman microscopy to identify their abundances, colors, shapes, and sizes to calculate their masses. Due to the strong dynamic of the ice layer and the repeated melting and freezing processes during the ice formation, no discernible trends in microplastic abundances, masses, or polymer types were observed throughout the ice core length. The average microplastic abundance (±SD) in the Baltic Sea ice was determined to be 22.3 ± 8.6 N L−1, with 64.9% of the particles exhibiting a particulate shape and 35.1% having a fibrous shape. The most prevalent polymer type was polyethylene terephthalate (PET), accounting for 44.4% of all polymers. This is likely due to the high proportion of PET fibers (93.8%). The majority of particle-shaped microplastics were identified as polyethylene (PE; 37.2%), followed by PET (17.2%), polyvinyl chloride (PVC; 15.9%), and polypropylene (PP; 15.9%). No correlations were found between microplastic concentrations and proximity to land, cities, industries, or rivers, except for PP mass concentrations and particle sizes, which correlated with distances to industries in Luleå, Sweden.

Funder

Leibniz Institute for Baltic Sea Research

Deutsche Forschungsgemeinschaft

Federal Ministry of Education and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3