Warm Core and Deep Convection in Medicanes: A Passive Microwave-Based Investigation

Author:

Panegrossi Giulia1ORCID,D’Adderio Leo Pio1,Dafis Stavros23ORCID,Rysman Jean-François4,Casella Daniele1ORCID,Dietrich Stefano1,Sanò Paolo1ORCID

Affiliation:

1. National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 00133 Rome, Italy

2. Institute of Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece

3. Data4Risk, 75015 Paris, France

4. LMD & LadHyX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract

Mediterranean hurricanes (Medicanes) are characterized by the presence of a quasi-cloud-free calm eye, spiral-like cloud bands, and strong winds around the vortex center. Typically, they reach a tropical-like cyclone (TLC) phase characterized by an axisymmetric warm core without frontal structures. Yet, some of them are not fully symmetrical, have a shallow warm-core structure, and a weak frontal activity. Finding a clear definition and potential classification of Medicanes based on their initiation and intensification processes, understanding the role of convection, and identifying the evolution to a TLC phase are all current research topics. In this study, passive microwave (PMW) measurements and products are used to characterize warm core (WC) and deep convection (DC) for six Medicanes that occurred between 2014 and 2021. A well-established methodology for tropical cyclones, based on PMW temperature sounding channels, is used to identify the WC while PMW diagnostic tools and products (e.g., cloud-top height (CTH) and ice water path (IWP)), combined with lightning data, are used for DC detection and characterization. The application of this methodology to Medicanes highlights the possibility to describe their WC depth, intensity, and symmetry and to identify the cyclone center. We also analyze to what extent the occurrence and characteristics of the WC are related to the Medicane’s intensity and DC development. The results show that Medicanes reaching full TLC phase are associated with deep and symmetric WCs, and that asymmetric DC features in the proximity of the center, and in higher CTH and IWP values, with scarce lighting activity. Medicanes that never develop to a fully TLC structure are associated with a shallower WC, weaker and more sparse DC activity, and lower CTHs and IWP values. Ultimately, this study illustrates the potential of PMW radiometry in providing insights into dynamic and thermodynamic processes associated with Medicanes’ WC characteristics and evolution to TLCs, thus contributing to the ongoing discussion about Medicanes’ definition.

Funder

EUMETSAT Satellite Application Facility for Hydrology and Water Management (H SAF) Third Continuous Development and Operation Phase

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3