Upscaling from Instantaneous to Daily Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) for Satellite Products

Author:

Chen Siyuan,Liu LiangyunORCID,He Xue,Liu Zhigang,Peng Dailiang

Abstract

The fraction of absorbed photosynthetically active radiation (FAPAR) is an essential climate variable (ECV) widely used for various ecological and climate models. However, all the current FAPAR satellite products correspond to instantaneous FAPAR values acquired at the satellite transit time only, which cannot represent the variations in photosynthetic processes over the diurnal period. Most studies have directly used the instantaneous FAPAR as a reasonable approximation of the daily integrated value. However, clearly, FAPAR varies a lot according to the weather conditions and amount of incoming radiation. In this paper, a temporal upscaling method based on the cosine of the solar zenith angle (SZA) at local noon ( c o s ( S Z A n o o n ) ) is proposed for converting instantaneous FAPAR to daily integrated FAPAR. First, the diurnal variations in FAPAR were investigated using PROSAIL (a model of Leaf Optical Properties Spectra (PROSPECT) integrating a canopy radiative transfer model (Scattering from Arbitrarily Inclined Leaves, SAIL)) simulations with different leaf area index (LAI) values corresponding to different latitudes. It was found that the instantaneous black sky FAPAR at 09:30 AM provided a good approximation for the daily integrated black sky FAPAR; this gave the highest correlation (R2 = 0.995) and lowest Root Mean Square Error (RMSE = 0.013) among the instantaneous black sky FAPAR values observed at different times. Secondly, the difference between the instantaneous black sky FAPAR values acquired at different times and the daily integrated black sky FAPAR was analyzed; this could be accurately modelled using the cosine value of solar zenith angle at local noon ( c o s ( S Z A n o o n ) ) for a given vegetation scene. Therefore, a temporal upscaling method for typical satellite products was proposed using a cos(SZA)-based upscaling model. Finally, the proposed cos(SZA)-based upscaling model was validated using both the PROSAIL simulated data and the field measurements. The validated results indicated that the upscaled daily black sky FAPAR was highly consistent with the daily integrated black sky FAPAR, giving very high mean R2 values (0.998, 0.972), low RMSEs (0.007, 0.014), and low rMAEs (0.596%, 1.378%) for the simulations and the field measurements, respectively. Consequently, the cos(SZA)-based method performs well for upscaling the instantaneous black sky FAPAR to its daily value, which is a simple but extremely important approach for satellite remote sensing applications related to FAPAR.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3