Transformer-Based Model with Dynamic Attention Pyramid Head for Semantic Segmentation of VHR Remote Sensing Imagery

Author:

Xu YufenORCID,Zhou ShangboORCID,Huang Yuhui

Abstract

Convolutional neural networks have long dominated semantic segmentation of very-high-resolution (VHR) remote sensing (RS) images. However, restricted by the fixed receptive field of convolution operation, convolution-based models cannot directly obtain contextual information. Meanwhile, Swin Transformer possesses great potential in modeling long-range dependencies. Nevertheless, Swin Transformer breaks images into patches that are single-dimension sequences without considering the position loss problem inside patches. Therefore, Inspired by Swin Transformer and Unet, we propose SUD-Net (Swin transformer-based Unet-like with Dynamic attention pyramid head Network), a new U-shaped architecture composed of Swin Transformer blocks and convolution layers simultaneously through a dual encoder and an upsampling decoder with a Dynamic Attention Pyramid Head (DAPH) attached to the backbone. First, we propose a dual encoder structure combining Swin Transformer blocks and reslayers in reverse order to complement global semantics with detailed representations. Second, aiming at the spatial loss problem inside each patch, we design a Multi-Path Fusion Model (MPFM) with specially devised Patch Attention (PA) to encode position information of patches and adaptively fuse features of different scales through attention mechanisms. Third, a Dynamic Attention Pyramid Head is constructed with deformable convolution to dynamically aggregate effective and important semantic information. SUD-Net achieves exceptional results on ISPRS Potsdam and Vaihingen datasets with 92.51%mF1, 86.4%mIoU, 92.98%OA, 89.49%mF1, 81.26%mIoU, and 90.95%OA, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3