RCC Structural Deformation and Damage Quantification Using Unmanned Aerial Vehicle Image Correlation Technique

Author:

Kumarapu KumarORCID,Mesapam Shashi,Keesara Venkat ReddyORCID,Shukla Anoop KumarORCID,Manapragada Naga Venkata Sai Kumar,Javed Babar

Abstract

Reinforced cement concrete (RCC) is universally acknowledged as a low-cost, rigid, and high-strength construction material. Major structures like buildings, bridges, dams, etc., are made of RCC and subjected to repetitive loading during their service life for which structural performance deteriorates with time. Bridges and high-rise structures, being above ground level, are hard to equip with the contact mechanical methods to inspect strains and displacements for structural health monitoring (SHM). A non-contact, optical and computer vision based full field measuring technique called digital image correlation (DIC) technique was developed in the recent past to specifically evaluate bridge decks. Generally, optical images of structure in field conditions are not acquired precisely perpendicular to the object, which instinctively affects the deformation results obtained during loading conditions. An unmanned aerial vehicle (UAV) equipped with DIC vision-based technique acts as a rapid and cost-effective tool to quantify the serviceability of bridges by measuring strains and displacements at inaccessible locations. In this study, a non-contact unmanned aerial vehicle image correlation (UAVIC) technique is used on a scaled bridge girder and a contact method of measuring deformations with a dial gauge. Both investigations are correlated for accuracy assessment, and it is understood that results in laboratory conditions are 90% accurate. Similarly, the UAVIC technique is also performed on a rail over the bridge in the field conditions to understand the feasibility of the proposed method and evaluate damage quantification of it.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Dynamic Monitoring of Rail and Bridge Displacements Using Digital Image Correlation;Murray;Master’s Thesis,2013

2. Post-Hazard Engineering Assessment of Highway Structures Using Remote Sensing Technologies (No. FHWA-HIF-20-004),2019

3. An investigation into fracture behavior of geopolymer concrete with digital image correlation technique

4. Bridge Deterioration Quantification Protocol Using UAV

5. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3