Comparisons of Tidal Currents in the Pearl River Estuary between High-Frequency Radar Data and Model Simulations

Author:

Zhu Langfeng,Lu Tianyi,Yang Fan,Liu Bin,Wu Lunyu,Wei Jun

Abstract

High-frequency (HF) radar data, derived from a pair of newly developed radar stations in the Pearl River Estuary (PRE) of China, were validated through comparison with in situ surface buoys, ADCP measurements, and model simulations in this study. Since no in situ observations are available in the radar observing domain, a regional high-resolution ocean model covering the entire PRE and its adjacent seas was first established and validated with in situ measurements, and then the HF radar data quality was examined against the model simulations. The results show that mean flows and tidal ellipses derived from the in situ buoys and ADCP were in very good agreement with the model. The model–radar data comparison indicated that the radar obtained the best data quality within the central overlapping area between the two radar stations, with the errors increasing toward the coast and the open ocean. Near the coast, the radar data quality was affected by coastlines and islands that prevent HF radar from delivering high-quality information for determining surface currents. This is one of the major drawbacks of the HF radar technique. Toward the open ocean, where the wind is the only dominant forcing on the tidal currents, we found that the poor data quality was most likely contaminated by data inversion algorithms from the Shangchuan radar station. A hybrid machine-learning-based inversion algorithm including traditional electromagnetic analysis and physical oceanography factors is needed to develop and improve radar data quality. A new radar observing network with about 10 radar stations is developing in the PRE and its adjacent shelf, this work assesses the data quality of the existing radars and identifies the error sources, serving as the first step toward the full deployment of the entire radar network.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3