Designing Theoretical Shipborne ADCP Survey Trajectories for High-Frequency Radar Based on a Machine Learning Neural Network

Author:

Zhu Langfeng12,Yang Fan3,Yang Yufan4,Xiong Zhaomin4,Wei Jun12

Affiliation:

1. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai 519082, China

2. Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Guangzhou 519082, China

3. Zhuhai Marine Environmental Monitoring Central Station of the State Oceanic Administration, Zhuhai 519000, China

4. School of Marine Sciences, Guangxi University, Nanning 530004, China

Abstract

A machine learning neural network-based design for shipborne ADCP navigation is proposed to improve the quality of high-frequency radar measurements. In traditional inversion algorithms for HF radars, sea surface velocity is directly extracted from electromagnetic echoes without constraints from oceanographic processes. Hence, we incorporated oceanographic information from observational data into seabed radar inversion results via an LSTM neural network model to enhance data accuracy. Through a series of numerical simulation experiments, we showed improved data accuracy and feasibility by incorporating both fixed-point and navigation observational data. The results indicate a significant reduction in (related) errors. This study has implications for guiding future navigation observations.

Funder

Key Research and Development Program of Guangdong Province

National Basic Research and Development Project of China

Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3