A Multiview Representation Learning Framework for Large-Scale Urban Road Networks

Author:

Chen Kaiqi,Chu Guowei,Lei Kaiyuan,Shi YanORCID,Deng Min

Abstract

Methods to learn informative representations of road networks constitute an important prerequisite to solve multiple traffic analysis tasks with data-driven models. Most existing studies are only developed from a topology structure or traffic attribute perspective, and the resulting representations are biased and cannot fully capture the complex traffic flow patterns that are attributed to human mobility in road networks. Moreover, real-world road networks usually contain millions of segments, which poses a great challenge regarding the memory usage and computational efficiency of existing methods. Consequently, we proposed a novel multiview representation learning framework for large-scale urban road networks to simultaneously preserve topological and human mobility information. First, the road network was modeled as a multigraph, and a multiview random walk method was developed to capture the structure function of the road network from a topology-aware graph and vehicle transfer pattern from a mobility-aware graph. In this process, a large-scale road network organization method was established to improve the random walk algorithm efficiency. Finally, word2vec was applied to learn representations based on sequences that were generated by the multiview random walk. In the experiment, two real-world datasets were used to demonstrate the superior performance of our framework through a comparative analysis.

Funder

National Natural Science Foundation of China

Key Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. On Representation Learning for Road Networks

2. A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data

3. HetETA: Heterogeneous information network embedding for estimating time of arrival;Hong;Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2020

4. ETA prediction with graph neural networks in Google maps;Derrow-Pinion;Proceedings of the 30th ACM International Conference on Information & Knowledge Management,2021

5. Road2Vec: Measuring Traffic Interactions in Urban Road System from Massive Travel Routes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MVCV-Traffic: multiview road traffic state estimation via cross-view learning;International Journal of Geographical Information Science;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3