Investigation of Quantitative Evaluation Method and Engineering Application of Shallow Buried Tunnel Face Stability

Author:

Zhou Guan-Nan,Yang Teng-Tian,Sun ZeORCID,Li Heng,Cheng Yun,Song Zhan-Ping,Han Jing-Jing

Abstract

The stability of a tunnel face and the rationality of its supporting structures are the guarantees for safe tunnel construction. This paper established a quantitative analysis model of tunnel face stability, obtained the calculation formula of the tunnel face stability coefficient based on the silo theory of surrounding rock, and then realized the quantitative description of stability of the tunnel face under the condition of a pipe roofing support, bolting support, grouting support and reserved core soil. Finally, a tunnel face stability discrimination and support optimization system was developed, its supporting effects were quantitatively evaluated, and the support measures were optimized based on a buried tunnel of Chongqing rail transit passing through the suburban expressway. The results show that the grouting support increased the stability coefficient by 103~412%, and its supporting effect is the most significant. The reinforcement with reserved core soil has the lowest cost. The tunnel face stability discrimination and support optimization system carries out a rapid judgment of tunnel face stability, and then provides a quantitative evaluation method for the assessment of the tunnel face. On-site monitoring indicates that the cumulative displacement gradually increased with monitoring time; the farther from the tunnel surface, the smaller the cumulative displacement. The cumulative displacement reached 34.50 mm before the optimization of the reinforcement scheme. The optimization scheme of pipe roofing support + reserved core soil + grouting support led to the gradual convergence of cumulative displacement. The final surface settlement displacement was reduced to 15.50 mm, which was about 44.93% of that before the optimization of reinforcement scheme, ensuring the safe construction of the buried tunnel. This research has a certain theoretical significance for the quantitative evaluation and analysis of the tunnel face stability of shallow buried tunnels.

Funder

Guan-nan Zhou

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3