Limit Equilibrium Models for Tunnel Face Stability in Composite Soft-Hard Strata

Author:

Zhang Xiao1,Song Qilong2,Yao Zhanhu1,Su Dong234ORCID,Zhang Yazhou1,Li Qiang234

Affiliation:

1. CCCC Tunnel Engineering Co., Ltd., Beijing 100024, China

2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

3. Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), Shenzhen University, Shenzhen 518060, China

4. Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen 518060, China

Abstract

The tunnel face stability in composite strata, commonly referred to as the soft upper and hard lower condition, is a critical challenge in tunnel construction. The soft–hard ratio (SA) strongly influences the limit support pressure as well as the failure mechanism experienced by a tunnel face. This study focused on the Xingye Tunnel project in the Xiangzhou District of Zhuhai City. By conducting numerical simulations, the impact of different SAs on the limit support pressure was investigated. Furthermore, a limit equilibrium model was established on the basis of the analysis of the results of numerical simulation. The findings were then compared and analyzed alongside those of relevant theoretical models. In the event of tunnel face instability of composite strata, the deformation tends to be concentrated mainly in the soft soil layer, with less noticeable deformation in the hard rock layer. The investigation of different SAs revealed a linear decrease in the limit support pressure ratio of the tunnel face in composite strata as SA decreases. The self-stability of the tunnel face was observed when SA ≤ 0.125. Moreover, the limit support pressure ratio predicted by the truncated log-spiral model (TLSM) exhibited a higher degree of agreement with the results of numerical simulation than those of other relevant models. The superiority of TLSM was mainly demonstrated in the range of SA = 0.25 to 1.0.

Funder

Shenzhen Science and Technology Program

Key Research and Development Project of Guangdong Province

Shenzhen University 2035 Program for Excellent Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3