DETECT-LC: A 3D Deep Learning and Textural Radiomics Computational Model for Lung Cancer Staging and Tumor Phenotyping Based on Computed Tomography Volumes

Author:

Fathalla Karma M.ORCID,Youssef Sherin M.,Mohammed Nourhan

Abstract

Lung Cancer is one of the primary causes of cancer-related deaths worldwide. Timely diagnosis and precise staging are pivotal for treatment planning, and thus can lead to increased survival rates. The application of advanced machine learning techniques helps in effective diagnosis and staging. In this study, a multistage neurobased computational model is proposed, DETECT-LC learning. DETECT-LC handles the challenge of choosing discriminative CT slices for constructing 3D volumes, using Haralick, histogram-based radiomics, and unsupervised clustering. ALT-CNN-DENSE Net architecture is introduced as part of DETECT-LC for voxel-based classification. DETECT-LC offers an automatic threshold-based segmentation approach instead of the manual procedure, to help mitigate this burden for radiologists and clinicians. Also, DETECT-LC presents a slice selection approach and a newly proposed relatively light weight 3D CNN architecture to improve existing studies performance. The proposed pipeline is employed for tumor phenotyping and staging. DETECT-LC performance is assessed through a range of experiments, in which DETECT-LC attains outstanding performance surpassing its counterparts in terms of accuracy, sensitivity, F1-score and Area under Curve (AuC). For histopathology classification, DETECT-LC average performance achieved an improvement of 20% in overall accuracy, 0.19 in sensitivity, 0.16 in F1-Score and 0.16 in AuC over the state of the art. A similar enhancement is reached for staging, where higher overall accuracy, sensitivity and F1-score are attained with differences of 8%, 0.08 and 0.14.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3