A Deep Learning-Based Framework for Uncertainty Quantification in Medical Imaging Using the DropWeak Technique: An Empirical Study with Baresnet
Author:
Affiliation:
1. The Institute of Computer Technology, Tu Wien University, 1040 Vienna, Austria
2. Department of Computer Eng., Bandirma Onyedi Eylul University, 10200 Balikesir, Turkey
3. Department of Informatics, Klaipeda University, 92294 Klaipeda, Lithuania
Abstract
Funder
Scientific Research Projects Coordination Unit of Bandırma Onyedi Eylül University
Publisher
MDPI AG
Subject
Clinical Biochemistry
Link
https://www.mdpi.com/2075-4418/13/4/800/pdf
Reference51 articles.
1. Deep Learning Techniques for Lung Cancer Diagnosis using CT Scan Images;Alotaibi;Int. J. Med. Eng. Inform.,2019
2. A Review on Deep Learning Algorithms and Applications;Shukla;J. Ambient. Intell. Humaniz. Comput.,2018
3. Radiomics and deep learning in lung cancer;Avanzo;Strahlenther. und Onkol.,2020
4. Andrew, A.G., and Bengio, Y. (2020). Why deep learning works: An exploration of generalization and robustness. ArXiv.
5. Deep Learning for Lung Cancer Nodules Detection and Classification in CT Scans;Riquelme;AI,2020
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods;Medical Image Analysis;2024-10
2. Advancing Prostate Cancer Diagnosis: A Deep Learning Approach for Enhanced Detection in MRI Images;Diagnostics;2024-08-27
3. The Fourth Industrial Revolution: Its Impact on Artificial Intelligence and Medicine in Developing Countries;Asian Bioethics Review;2024-05-25
4. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization;Physics in Medicine & Biology;2024-04-15
5. Chest X-ray Images for Lung Disease Detection Using Deep Learning Techniques: A Comprehensive Survey;Archives of Computational Methods in Engineering;2024-02-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3