Abstract
In this paper, an adaptive fading-memory receding-horizon (AFMRH) filter is proposed by combining the receding-horizon structure and the adaptive fading-memory method. In the recent finite horizon, state error covariance is adapted with an adaptive fading factor; then the process noise covariance matrix adaption is realized by adjusting the properties of systems. An AFMRH fixed-lag smoother is also proposed by combining the proposed AFMRH filtering algorithm and a Rauch–Tung–Striebel smoothing algorithm to improve the estimation accuracy. Because the proposed AFMRH filter and smoother are reduced to the optimal receding-horizon (RH) filter and smoother when all measurements have the same weight, the proposed adaptive RH estimators could provide a more general solution than the optimal RH filter and smoother. To reduce the complexity and improve the estimation performance of the proposed RH estimators, an adaptive horizon adjustment method and a switching filtering algorithm based on an adaptive fading factor are also proposed. In particular, the proposed adaptive horizon adjustment method is designed to be computationally efficient, which makes it suitable for online and real-time applications. Through computer simulation, the performance and adaptiveness of the proposed approaches were verified by comparing them with existing fading-memory approaches.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference34 articles.
1. New Results in Linear Filtering and Prediction Theory
2. Applied Optimal Estimation;Gelb,1974
3. Optimal Estimation: With an Introduction to Stochastic Control Theory;Lewis,1986
4. Kalman Filtering—Theory and Practice;Grewal,1993
5. Divergence of the Kalman filter
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献