Shape Optimization with a Flattening-Based Morphing Method

Author:

Kim Honghee,Oh Sahuck

Abstract

In shape optimization problems, generating variously shaped designs is an important task. In this study, a new design method called the flattening-based morphing method, which can create various designs efficiently based on baseline objects, is proposed. In the flattening-based method, anchor points are defined for each baseline object to set correspondence among the baseline objects, and each baseline object is mapped to 2D parametric space in a way that places all corresponding anchor points of the baseline objects at the same location. Then, remeshing is carried out to make the baseline objects’ mesh topologically identical in the parametric space. After these remeshed baseline objects are parameterized back to the physical space, the morphed object is created by computing the positions of its vertices as a weighted sum of the baseline meshes’ vertices. When the flattening-based morphing method is applied to find the optimal shape of a blended-wing body aircraft using an artificial neural network (ANN), the aerodynamic performance enhanced optimal model with an appropriate loading capacity is successfully achieved using three baseline models. The simulation results of the baseline models and optimization results are also provided in the current study.

Funder

Korea Aerospace University faculty research grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Investigation of Aerodynamic Characteristics of Hyperloop System Using Optimized Capsule Design;International Journal of Automotive and Mechanical Engineering;2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3