Vapor Overproduction Condition Monitoring in a Liquid–Vapor Ejector

Author:

Sharapov SerhiiORCID,Mižáková JanaORCID,Husiev Danylo,Panchenko VitaliiORCID,Ivanov VitaliiORCID,Pavlenko IvanORCID,Židek KamilORCID

Abstract

We consider the influence of vapor content in the mixed flow leaving a liquid-vapor ejector on the energy efficiency of a vacuum unit. As shown by numerical studies of liquid-vapor ejectors, this issue is important as vapor overproduction, which accompanies the process of secondary flow ejection, directly impacts the efficiency of the working process of both the liquid-vapor ejector and the vacuum unit as a whole. The greater the degree of vapor overproduction, the greater the load on the vapor phase of the separator, which is part of the vacuum unit. In addition, the liquid phase must be returned to the cycle to ensure the constancy of the mass flow rate of the working fluid of the primary flow. Our numerical study results revealed the rational value of the degree of vapor overproduction at which the efficiency of the liquid–vapor ejector was maximized, and the amount of additional working fluid that needed to enter the cycle of the vacuum unit was minimal. Experimental condition monitoring studies on the liquid–vapor ejector were carried out on plane-parallel transparent models with different flow path geometries. Through experimental studies, we confirmed and adjusted the values of the achievable efficiency of the working process of a liquid–vapor ejector, depending on the degree of vapor overproduction. Using a comparative analysis of liquid–vapor ejectors with different flow path geometries, differences were revealed in their working processes, which consisted of the degree of completion of the mixing of the working media of primary and secondary flows. To determine the feasibility of using liquid–vapor ejectors with different flow path geometries, exergy analysis was performed, resulting in achievable efficiency indicators.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3