Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems

Author:

Riaz FahidORCID,Yam Fu Zhi,Qyyum Muhammad AbdulORCID,Shahzad Muhammad Wakil,Farooq MuhammadORCID,Lee Poh Seng,Lee MoonyongORCID

Abstract

This paper describes an ejector model for the prediction of on-design performance under available conditions. This is a direct method of calculating the optimal ejector performance (entrainment ratio or ER) without the need for iterative methods, which have been conventionally used. The values of three ejector efficiencies used to account for losses in the ejector are calculated by using a systematic approach (by employing CFD analysis) rather than the hit and trial method. Both experimental and analytical data from literature are used to validate the presented analytical model with good agreement for on-design performance. R245fa working fluid has been used for low-grade heat applications, and Engineering Equation Solver (EES) has been employed for simulating the proposed model. The presented model is suitable for integration with any thermal system model and its optimization because of its direct, non-iterative methodology. This model is a non-dimensional model and therefore requires no geometrical dimensions to be able to calculate ejector performance. The model has been validated against various experimental results, and the model is employed to generate the ejector performance curves for R245fa working fluid. In addition, system simulation results of the ejector refrigeration system (ERS) and combined cooling and power (CCP) system have been produced by using the proposed analytical model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3