The Influence of Reservoir Clay Composition on Heavy Oil In Situ Combustion

Author:

Minkhanov Ilgiz F.,Bolotov Alexander V.,Tazeev Aidar R.,Chalin Vladislav V.,Kacou Anini Franck D.,Galeev Ranel I.,Sagirov Rustam N.,Al-Muntaser Ameen A.,Emelianov Dmitrii A.ORCID,Khelkhal Mohammed AmineORCID,Varfolomeev Mikhail A.ORCID

Abstract

Thermally enhanced oil recovery methods, such as in situ combustion and steam injection, are generating considerable interest in terms of improving oil reserve exploitation and satisfying oil demand and economic growth. However, the early breakthrough of the in situ combustion front and the significant amount of heat loss associated with steam injection for deeper reservoir applications are the main challenges that require urgent solutions. Further data collection related to the effects of a reservoir’s physical and chemical properties, temperature, and pressure on in situ combustion front propagation and steam injection heat transfer inefficiency would be needed to achieve better reservoir oil recovery. Most studies have focused on the application of catalytic systems and the investigation of minerals’ effects on combustion front stabilization; however, the effect of clay interlayers’ minerals on the performance of in situ combustion is still poorly understood. This paper takes a new look at the role played by the interlayers’ minerals in stabilizing the combustion front using X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC) combined with nuclear magnetic resonance (NMR), and combustion tube experiments. The studied samples’ compositions were analyzed by XRD, TG/DSC, and NMR techniques. Meanwhile, the effects of interlayers’ minerals on oil production were screened by combustion tube experiments. The data obtained from this study suggest that clay dispersion within a reservoir would improve oil recovery via in situ combustion, and our study led us to obtain an 80.5% recovery factor. However, the experiments of models with clay interlayers showed less recovery factors, and the model with interlayers led to a 0% recovery factor in the presence of air injection. Meanwhile, the same model in hydrothermal and air injection conditions led to a 13.9% recovery factor. This was due to the hydrothermal effect improving permeability and pore enlargement, which allowed the transfer of heat and matter. Moreover, our study found that clay minerals exhibit excellent catalytic effects on the formation of fuel deposition and the coke oxidation process. This effect was reflected in the significant role played by clay minerals in decreasing the number of heteroatoms by breaking down the C-S, C-N, and C-O bonds and by stimulating the processes of hydrocarbon polymerization during the in situ combustion. Our results add to a growing body of literature related to in situ combustion challenges and underline the importance of a reservoir’s physical parameters in the successful application of in situ combustion.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3