An Optimized Trajectory Planner and Motion Controller Framework for Autonomous Driving in Unstructured Environments

Author:

Xiong Lu,Fu ZhiqiangORCID,Zeng Dequan,Leng Bo

Abstract

This paper proposes an optimized trajectory planner and motion planner framework, which aim to deal with obstacle avoidance along a reference road for autonomous driving in unstructured environments. The trajectory planning problem is decomposed into lateral and longitudinal planning sub-tasks along the reference road. First, a vehicle kinematic model with road coordinates is established to describe the lateral movement of the vehicle. Then, nonlinear optimization based on a vehicle kinematic model in the space domain is employed to smooth the reference road. Second, a multilayered search algorithm is applied in the lateral-space domain to deal with obstacles and find a suitable path boundary. Then, the optimized path planner calculates the optimal path by considering the distance to the reference road and the curvature constraints. Furthermore, the optimized speed planner takes into account the speed boundary in the space domain and the constraints on vehicle acceleration. The optimal speed profile is obtained by using a numerical optimization method. Furthermore, a motion controller based on a kinematic error model is proposed to follow the desired trajectory. Finally, the experimental results show the effectiveness of the proposed trajectory planner and motion controller framework in handling typical scenarios and avoiding obstacles safely and smoothly on the reference road and in unstructured environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3