Abstract
Global warming and related disturbances, such as drought, water, and heat stress, are causing forest decline resulting in regime shifts. Conventional studies have combined tree-ring width (TRW) and the normalized difference vegetation index (NDVI) to reconstruct NDVI values and ignored the influences of mixed land covers. We built an integrated TRW-NDVI model and reconstructed the annual NDVI maps by using 622 Landsat satellite images and tree cores from 15 plots using point-by-point regression. Our model performed well in the study area, as demonstrated by significant reconstructions for 71.14% (p < 0.05) of the area with the exclusion of water and barren areas. The error rate between the reconstructed NDVI using the conventional approach and our approach could reach 10.36%. The 30 m resolution reconstructed NDVI images in the recent 100 years clearly displayed a decrease in vegetation density and detected decades-long regime shifts from 1906 to 2015. Our study site experienced five regime shifts, markedly the 1930s and 1950s, which were megadroughts across North America. With fine resolution maps, regime shifts could be observed annually at the centennial scale. They can also be used to understand how the Yellowstone ecosystem has gradually changed with its ecological legacies in the last century.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献