Author:
Qin Jin,Bai Hongying,Zhao Pei,Fang Shu,Xiang Yuanlin,Huang Xiaoyue
Abstract
Larix chinensis Beissn., as a native, dominant and climate-sensitive coniferous species at Mount Taibai timberline, Qinling mountains, is rarely disturbed by anthropogenic activities; thus, it is an ideal proxy for the investigation of climate change or vegetation evolution. In this study, we applied dendrochronological methods to the L. chinensis tree-ring series from Mt. Taibai and investigated the relationships between tree-ring widths and NDVI/climate factors using Pearson correlation analysis. On the basis of the remarkable positive correlations (r = 0.726, p < 0.01, n = 23) between local July normalized difference vegetation indices (NDVI) and tree-ring width indices, the regional 146-year annual maximum vegetation density was reconstructed using a regression model. The reconstructed NDVI series tracked the observed data well, as the trans-function accounted for 52.8% of observed NDVI variance during AD 1991–2013. After applying an 11-year moving average, five dense vegetation coverage periods and six sparse vegetation coverage periods were clearly presented. At a decadal scale, this reconstruction was reasonably and negatively correlated with a nearby historical-record-based dryness/wetness index (DWI), precisely verifying that local vegetation cover was principally controlled by hydrothermal variations. Spectral analysis unveiled the existence of 2–3-year, 2–4-year, 5–7-year and 7–11-year cycles, which may potentially reflect the connection between local NDVI evolution and larger-scale circulations, such as the El Niño–Southern Oscillation (ENSO) and solar activity. This study is of great significance for providing a long-term perspective on the dynamics of vegetation cover in the Qinling mountains, and could help to guide expectations of future forest variations.
Funder
Public Welfare Special Fund of the China Forestry Scientific Research
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献