Three-Dimensional CFD Simulations of Start-Up Processes of a Pump-Turbine Considering Governor Regulation

Author:

Yang Zhiyan,Cheng YongguangORCID,Liu Ke,Hou Xiaoxia,Zhang Xiaoxi,Wang Xi,Ding Jinghuan

Abstract

The pumped-storage power station is an efficient stability regulator of the power grid. However, due to the instability of the pump-turbine in the S-shaped characteristic region, rotational speed fluctuation is easy to occur in the speed no-load condition, making synchronization with and connection to the grid difficult. To investigate the key factors of these difficult grid connections, the start-up processes of a practical pump-turbine under the lowest head condition were simulated by using the three-dimensional CFD method, in which the governor regulating equations with different regulating parameters were integrated successfully. The results show that the working points oscillate with the fluctuations of rotational speed, discharge, and torque, and different regulating parameters have a significant influence on the dynamic histories. In addition, the internal flow patterns, especially the backflows at the runner inlet, keep apparent values at the middle span (0.5 span) but have regular transitions near the shroud side (0.7–0.8 span). The faster the guide vanes adjust, the faster the backflows change, and the larger the macro parameters fluctuate. Overall, the instability of the start-up is the result of the periodical evolutions of backflows at the runner inlet, because the trend and period of the radial velocities at different inlet span locations are consistent with those of the discharge.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3