Electromagnetic Absorption and Mechanical Properties of Natural Rubber Composites Based on Conductive Carbon Black and Fe3O4

Author:

Pongmuksuwan Pornlada,Salayong Kiadtisak,Lertwiriyaprapa Titipong,Kitisatorn Wanlop

Abstract

In contemporary civilization, the electromagnetic radiation from electronic devices and communication systems has become a substantial pollutant. High-performance electromagnetic absorbers have become a solution for absorbing unwanted electromagnetic waves. This research proposed a lightweight and flexible electromagnetic absorber produced from natural rubber filled with conductive carbon black (CCB) and Fe3O4. The effect of CCB, Fe3O4, and a combination of CCB and Fe3O4 as a hybrid filler on foam morpholog, electromagnetic reflectivity, tensile strength, and compression set properties were investigated. In addition, the effect of the alternating layered structure of CCB and Fe3O4 on electromagnetic absorption was investigated. The results indicated that the composite foam exhibited an interconnected network structure that enhanced the electromagnetic attenuation in the absorber. CCB increased the electromagnetic absorption of the foam, whereas Fe3O4 had less of an effect. The foam filled with the hybrid filler at the CCB/Fe3O4 ratio of 8/2 exhibited excellent electromagnetic absorption. The composite foam had a higher tensile modulus and higher strength compared to neat foam. The addition of CCB decreased the compression set; however, the compression set was improved by the incorporation of Fe3O4. Composite foams filled with hybrid filler can serve as highly efficient electromagnetic absorbing materials.

Funder

King Mongkut’s University of Technology North Bangkok

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3