The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites

Author:

Kruželák Ján1ORCID,Kvasničáková Andrea1,Džuganová Michaela1,Dosoudil Rastislav2,Hudec Ivan1,Krump Henrich3

Affiliation:

1. Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia

2. Department of Electromagnetic Theory, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Iľkovičova 3, 812 19 Bratislava, Slovakia

3. Bizlink Technology, Trenčianska Teplá 1356, 914 01 Trenčianska Teplá, Slovakia

Abstract

Three types of composites were tested for electromagnetic interference (EMI) absorption shielding effectiveness, the curing process, and their physical–mechanical properties. For the first type of composites, nickel–zinc ferrite, manganese–zinc ferrite, and both fillers in their mutual combinations were incorporated into acrylonitrile–butadiene rubber. The overall content of the filler, or fillers, was kept at 200 phr. Then, carbon black or carbon fibers were incorporated into each rubber formulation at a constant loading of—25 phr, while the content of magnetic fillers was unchanged, at —200 phr. This work focused on the understanding of correlations between the electromagnetic shielding parameters and electrical conductivity of composites in relation to their EMI absorption shielding effectiveness. The absorption shielding abilities of materials were evaluated within a frequency bandwidth from 1 MHz to 6 GHz. This study revealed good correlation among permittivity, conductivity, and EMI absorption effectiveness. Although the absorption shielding efficiency of composites filled only with ferrites seems to be the highest, the absorption maxima of those composites reached over 6 GHz. The application of carbon-based fillers resulted in the higher electrical conductivity and higher permittivity of composites, which was reflected in their lower absorption shielding performance. However, the composites filled with ferrites and carbon-based fillers absorbed electromagnetic radiation within the desired frequency range. The presence of carbon-based fillers caused improvement in the tensile behavior of composites. This study also demonstrated that the higher the ratio of nickel–zinc ferrite in combined magnetic fillers, the better the absorption shielding efficiency.

Funder

Slovak Research and Development Agency

agency VEGA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3