Preliminary Experimental Quantification of Helium Leakages from Flanged Connections at HCPB TBS Operative Conditions

Author:

Venturini Alessandro1ORCID,Papa Francesca2ORCID,Utili Marco1ORCID

Affiliation:

1. ENEA Brasimone, Camugnano, 40032 Bologna, Italy

2. Nuclear Section, Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Corso Vittorio Emanuele II 244, 00186 Rome, Italy

Abstract

The HCPB TBS (Helium-Cooled Pebble Bed Test Blanket System) is one of the two European TBSs that will be installed and tested in the ITER reactor. The use of flanged connections in the Helium Coolant System and the Tritium Extraction System of the HCPB TBS would make the remote maintenance operations easier and faster. Therefore, investigating the helium leakage from flanges becomes a fundamental step toward the control of the tritium activity in the Port Cell, as the helium flow will contain a variable but not negligible amount of tritium. The first set of experiments on helium leakages from flanged connections is described in this paper. The experiments were performed in a HeFUS3 facility, an eight-shaped helium loop designed to work at HCPB-TBS-relevant conditions. The facility can provide a helium mass flow rate in the range of 0.27–1.4 kg/s and can reach a pressure as high as 80 bar and a temperature up to 530 °C. Two types of gaskets were tested in this campaign: a spiral-wound gasket and an oval ring joint. The gasket/flange assemblies are described in detail in this paper, together with the test section that hosts them and the performed commissioning tests. The tests were carried out at 500 °C and 80 bar. In these conditions, the leak rate from the flange with the oval ring joint resulted in being, on average, 1.42·10−6 mbar∙L/s, while the leak rate from the flange with the spiral-wound gasket resulted in being, on average, 3.73·10−3 mbar∙L/s.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3