Abstract
It is well known that stress-induced phase transformation in dual-phase steel leads to the degradation of bulk corrosion resistance properties. Predicting this behaviour in high carbon steel is imperative for designing this grade of steel for more advanced applications. Dual-phase high carbon steel consists of a martensitic structure with metastable retained austenite which can be transformed to martensite when the required energy is attained, and its usage has increased in the past decade. In this study, insight into the influence of deformed microstructures on corrosion behaviour of dual-phase high carbon steel was investigated. The generation of strain-induced martensite formation (SIMF) by residual stress through plastic deformation, misorientation and substructure formation was comprehensively conducted by EBSD and SEM. Tafel and EIS methods were used to determine corrosion intensity and the effect of corrosion behaviour on hardness properties. As a result of the static compression load, the retained austenite transformed into martensite, which lowered its corrosion rate by 5.79% and increased the dislocation density and the length of high-angle grain boundaries. This study demonstrates that balancing the fraction of the martensite phase in structure and dislocation density, including the length of high-angle grain boundaries, will result in an increase in the corrosion rate in parallel with the applied compression load.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献