Author:
Guerova Guergana,Dimitrova Tsvetelina,Georgiev Stefan
Abstract
Bulgaria is a country with a high frequency of hail and thunderstorms from May to September. For the May–September 2010–2015 period, statistical regression analysis was applied to identify predictors/classification functions that contribute skills to thunderstorm forecasting in the Sofia plain. The functions are based on (1) instability indices computed from radiosonde data from Sofia station F1, and (2) combination of instability indices and Integrated Water Vapor (IWV), derived from the Global Navigation Satellite System (GNSS) station Sofia-Plana, F2. Analysis of the probability of detection and the false alarm ratio scores showed the superiority of the F2 classification function, with the best performance in May, followed by June and September. F1 and F2 scores were computed for independent data samples in the period 2017–2018 and confirmed the findings for the 2010–2015 period. Analysis of IWV and lightning flash rates for a multicell and supercell thunderstorm in June and July 2014 showed that the monthly IWV thresholds are reached 14.5 and 3.5 hours before the thunderstorm, respectively. The supercell IWV peak registered 40 min before the thunderstorm, followed by a local IWV minimum corresponding to a peak in the flash rate. In both cases, an increase of IWV during severe hail was registered, which is likely related to the hydrometeor contribution to GNSS path delay. The results of this study will be integrated into the Bulgarian Integrated NowCAsting tool for thunderstorm forecasting in the warm/convective season.
Subject
General Earth and Planetary Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献