Evaluation of Technical Solutions to Improve Transient Stability in Power Systems with Wind Power Generation

Author:

Tina Giuseppe MarcoORCID,Maione GiovanniORCID,Licciardello Sebastiano

Abstract

Reliability and safety must be carefully considered in today’s power systems, which are rapidly evolving toward ever higher penetration of renewable, inverter-based generation units. Power systems are constantly stressed by active power disturbances, which can be exacerbated by wind and solar systems that are subject to rapid fluctuations in primary energy. In this framework, a comparative technical analysis of solutions to improve transient stability, both rotor angle stability and frequency stability, is carried out. These solutions can be adopted by the transmission system operator (e.g., an additional parallel transmission line), by the generation companies (e.g., a fast excitation system), or by both, such as SVC (static VAR compensator) and STATCOM (static synchronous compensator). Sensitivity analyses were carried out to assess the impact of the location of the wind turbines in the buses of the grid on their rated power and level of production. On the basis of these analyses, the worst-case fault was considered, and the critical fault recovery time was determined as an engineering parameter to compare the different solutions. For the numerical analysis, a modified IEEE 9-bus system was considered, and the PowerWorld software tool was used. Rotor angle and frequency stability analyses were performed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference17 articles.

1. Impact of Increased Penetration of DFIG-Based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems

2. Wind Power Impact on Power System Frequency Response;Chamorro;Proceedings of the 2013 North American Power Symposium (NAPS),2013

3. Piano di Sviluppo 2020,2020

4. Piano di Sviluppo 2021,2021

5. Technical impacts of high penetration levels of wind power on power system stability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3