Fast Power System Transient Stability Simulation

Author:

Kumissa Teshome Lindi1ORCID,Shewarega Fekadu2

Affiliation:

1. Institute of Technology, School of Electrical and Computer Engineering (SECE), Hawassa University, Hawassa, Ethiopia

2. Institutes of Electrical Power Systems, University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract

Power system transient stability simulation is of critical importance for utilities to assess dynamic security. Most of the commercially available tools use the traditional numerical integration method to simulate power system transient stability, which is computationally intensive and has low simulation speed. This makes it difficult to identify any insecure contingency before it happens. It is already proven that power system transient stability simulation achieved using the differential transformation method (DTM) requires less computational effort and has improved simulation speed, but it still requires further improvement regarding its accuracy and performance efficiency. This paper introduces a novel power system transient stability simulation method based on the adaptive step-size differential transformation method. Using the proposed method, the step size is varied based on the estimated local solution error at each time step. The accuracy and speed of the proposed simulation approach are investigated in comparison with the classical differential transformation method and the traditional numerical integration method using the IEEE 9 bus and 39 bus test systems. The simulation results reveal that the proposed method increases the simulation speed by 20–44.57% and 83–92% when compared with the classical DTM and traditional numerical-integration-based simulation methods, respectively. It is also proved that compared with the DTM-based simulation, the proposed method provides 45.27% to 58.85% and more than 90% accurate simulation results for IEEE 9 and IEEE 39 test systems, respectively. Therefore the proposed power system transient stability simulation method is faster and relatively more accurate and can be applied for online transient stability monitoring of power system networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3