Air-Coupled Ultrasound Sealing Integrity Inspection Using Leaky Lamb Waves in a Simplified Model of a Lithium-Ion Pouch Battery: Feasibility Study

Author:

Cho HyunwooORCID,Kil Eunwoo,Jang JihunORCID,Kang Jinbum,Song Ilseob,Yoo Yangmo

Abstract

Inspecting the sealing integrity of lead tabs is an important means of ensuring the reliability and safety of pouch-type lithium-ion (Li-ion) batteries with a thin multi-layered aluminum (Al) laminated film. This paper presents a new air-coupled ultrasonic non-destructive testing (NDT) inspection method based on leaky Lamb wave transmission; and reception for evaluating the sealing integrity between the lead tab and the Al pouch film. The proposed method uses the critical incidence angle between the air and the layer with the fastest Lamb wave velocity to maximize the signal-to-noise ratio in the through-transmission mode. To determine the critical incidence angle, phantom experiments with two test pieces (i.e., an Al tab and an Al tab sealed with an Al pouch film) are conducted. In addition, 2D scans are performed at various incidence angles for an inhouse pouch-type Li-ion battery with a 1-mm-wide foreign material inserted as a defect. At the critical incidence angle (i.e., 22°), the proposed air-coupled ultrasonic NDT method in through-transmission mode successfully identifies the shape and location of the defect through c-scan image reconstruction. These preliminary results indicate that the proposed air-coupled ultrasonic NDT method with leaky Lamb waves can be used to inspect the sealing integrity of Li-ion pouch batteries in dry test conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3