Noncontact Damage Topography Reconstruction by Wavenumber Domain Analysis Based on Air-Coupled Ultrasound and Full-Field Laser Vibrometer

Author:

Zhang Hui,Liang DongmeiORCID,Rui XiaoboORCID,Wang ZhuochenORCID

Abstract

Noncontact ultrasonic detection technology is an effective method to detect damage in time. This paper proposes a noncontact damage detection system based on air-coupled ultrasound and full-field laser vibrometer, which realizes the excitation of relatively single-mode guided waves and the wavefield automatic detection. The system performance is verified through experiments, and the experimental wavenumber is consistent with the theoretical dispersion characteristics of the Lamb wave in the A0 mode. Based on this system, the topography reconstruction algorithms, including the Wavenumber Filtering Algorithm and Spatial Wavenumber Algorithm, were tested and compared with the aluminum alloy plate and the carbon fiber reinforced polymer plate. The results show that, based on the air-coupled ultrasound and full-field laser vibrometer detection system, the Spatial Wavenumber Algorithm has better imaging error and contrast, and the damage edge detection is smoother.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3