Analysis of barely visible impact damage severity with ultrasonic guided Lamb waves

Author:

Dafydd Ifan1ORCID,Sharif Khodaei Zahra1

Affiliation:

1. Department of Aeronautics, Imperial College London, London, UK

Abstract

Barely visible impact damage is one of the most common types of damage in carbon-fibre-reinforced polymer composite structures. This article investigates the potential of using ultrasonic guided Lamb waves to characterise the through thickness severity of barely visible impact damage in thin carbon-fibre-reinforced polymer structures. In the first step, a laser Doppler vibrometer was used to capture the full damage interaction of the wavefield excited by a piezoelectric actuator. Damage-scattered wavefield for four different severities were studied to find the best parameters for characterising the severity of damage. To reduce the overall acquisition time and size of data collected using the laser Doppler vibrometer, the measured signals were reconstructed from a singular broadband chirp response using a post-processing algorithm. From the full wavefield analysis obtained at a wide range of toneburst frequencies, the results showed that barely visible impact damage severity could be characterised using ultrasonic guided Lamb waves and that the [Formula: see text] mode, dominant at lower frequencies, gave better results than the [Formula: see text] mode. In the second step, the parameters for characterising the damage severity were applied to a sparse network of transducers as an in-service structural health monitoring methodology. The damage was successfully detected and located. In addition, the transducer path close to the predicted damage location was utilised to successfully quantify the damage severity based on the proposed damage index.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3