Crack Size Identification for Bearings Using an Adaptive Digital Twin

Author:

Piltan FarzinORCID,Kim Jong-MyonORCID

Abstract

In this research, the aim is to investigate an adaptive digital twin algorithm for fault diagnosis and crack size identification in bearings. The main contribution of this research is to design an adaptive digital twin (ADT). The design of the ADT technique is based on two principles: normal signal modeling and estimation of signals. A combination of mathematical and data-driven techniques will be used to model the normal vibration signal. Therefore, in the first step, the normal vibration signal is modeled to increase the reliability of the modeling algorithm in the ADT. Then, to help challenge the complexity and uncertainty, the data-driven method will solve the problems of the mathematically based algorithm. Thus, first, Gaussian process regression is selected, and then, in two steps, we improve its resistance and accuracy by a Laguerre filter and fuzzy logic algorithm. After modeling the vibration signal, the second step is to design the data estimation for ADT. These signals are estimated by an adaptive observer. Therefore, a proportional-integral observer is then combined with the proposed technique for signal modeling. Then, in two stages, its robustness and reliability are strengthened using the Lyapunov-based algorithm and adaptive technique, respectively. After designing the ADT, the residual signals that are the difference between original and estimated signals are obtained. After that, the residual signals are resampled, and the root means square (RMS) signals are extracted from the residual signals. A support vector machine (SVM) is recommended for fault classification and crack size identification. The strength of the proposed technique is tested using the Case Western Reserve University Bearing Dataset (CWRUBD) under diverse torque loads, various motor speeds, and different crack sizes. In terms of fault diagnosis, the average detection accuracy in the proposed scheme is 95.75%. In terms of crack size identification for the roller, inner, and outer faults, the proposed scheme has average detection accuracies of 97.33%, 98.33%, and 98.33%, respectively.

Funder

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3