A Novel Physics-Informed Hybrid Modeling Method for Dynamic Vibration Response Simulation of Rotor–Bearing System

Author:

Zhu Mengting1,Peng Cong1ORCID,Yang Bingyun1,Wang Yu1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

For rotor–bearing systems, their dynamic vibration models must be built to simulate the vibration responses that affect the safe and reliable operation of rotating machinery under different operating conditions. Single physics-based modeling methods can be used to produce sufficient but inaccurate vibration samples at the cost of computational complexity. Moreover, single data-driven modeling methods may be more accurate, employing larger numbers of measured samples and reducing computational complexity, but these methods are affected by the insufficient and imbalanced samples in engineering applications. This paper proposes a physics-informed hybrid modeling method for simulating the dynamic responses of rotor–bearing systems to vibration under different rotor speeds and bearing health statuses. Firstly, a three-dimensional model of a rolling bearing and its supporting force are introduced, and a physics-based dynamic vibration model that couples flexible rotors and rigid bearings is constructed using multibody dynamics simulation. Secondly, combining the simulation vibration data obtained using the physics-based model with measured vibration data, algorithms are designed to learn vibration generation and data mapping networks in series connection to form a physics-informed hybrid model, which can quickly and accurately output the vibration responses of a rotor–bearing system. Finally, a case study on the single-span rotor platform is provided. By comparing the signal output by the proposed physics-informed hybrid modeling method with the measured signal in the time and frequency domains, the effectiveness of proposed method under both constant- and variable-speed operating conditions are illustrated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3