A Novel Dynamic Spectrum-Sharing Method for Integrated Wireless Multimedia Sensors and Cognitive Satellite Networks

Author:

Wang Chuang,Bian Dongming,Zhang GengxinORCID,Cheng Jian,Li Yongqiang

Abstract

With the growing demand, Wireless Multimedia Sensor Networks (WMSNs) play an increasingly important role, which enhances the capacity of typical Wireless Sensor Networks (WSNs). Additionally, integrating satellite systems into WMSNs brings about the beneficial synergy, especially in rural and sparsely populated areas. However, the available spectrum resource is scarce, which contradicts the high-speed content required for multimedia. Cognitive radio is a promising solution to address the conflict. In this context, we propose a novel spectrum-sharing method for the integrated wireless multimedia sensor and cognitive satellite network based on the dynamic frequency allocation. Specifically, the Low Earth Orbit (LEO) satellite system plays the role of the auxiliary to connect sensor nodes and the remote control host, and it shares the same frequency with the Geostationary Earth Orbit (GEO) system in the downlink. Because the altitudes of GEO and LEO satellites differ greatly, the beam size of GEO is much larger than that of LEO, which provides the opportunity for LEO beam to reuse the frequency that was allocated to the GEO beam. A keep-out region is defined to guarantee the spectral coexistence based on the interference analysis in the worst case. In addition, a dynamic frequency allocation algorithm is presented to deal with the dynamic configuration caused by the satellite motion. Numerical results demonstrate that the dynamic spectrum-sharing method can improve the throughput.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3