Cognitive Radio Strategy Combined with MODCOD Technique to Mitigate Interference on Low-Orbit Satellite Downlinks

Author:

Araujo Rodolfo1ORCID,da Silva Luciano1ORCID,Santos Walter2,Souza Marcelo3

Affiliation:

1. Division of Space Electronics and Computing, National Institute for Space Research, São José dos Campos 12227-010, SP, Brazil

2. Division of Small Satellites, National Institute for Space Research, São José dos Campos 12227-010, SP, Brazil

3. Space Engineering and Technology Course-ETE, National Institute for Space Research, São José dos Campos 12227-010, SP, Brazil

Abstract

The concept of cognitive radio (CR) as a tool to optimize the obstacle of spectral coexistence has promoted the development of shared satellite–terrestrial wireless networks. Nevertheless, in some applications like Earth Exploration Satellite Services, which demand high spectral efficiency (bps/Hz) for downlink transmissions, spectral coexistence amidst interferences from cellular Base Stations is still challenging. Our research aims to mitigate these interferences on low-orbit satellite downlinks carrying imaging data received from a ground station. In order to fulfill this, we present cognitive radio approaches to enhance spectrum exploitation and introduce the adaptive modulation and coding (MODCOD) technique to increase RF power and spectral efficiencies. Therefore, we propose a combined methodology using CR and adaptive MODCOD (ACM) techniques. Afterwards, we applied the solution by monitoring the signal to interference plus noise ratio and the MODCOD strategy. Finally, we provide a real in situ case study at the Cuiabá ground station located in Brazil’s central area, which receives images from an Earth observation satellite (EOS). In addition to demonstrating the strategy effectiveness in this scenario, we conducted a bench test emulating the interfering wireless communication system. In this sense, we demonstrated the proposed approach, successfully mitigating the harmful effects on the received EOS images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3