Cyanobacterial Biomass as a Potential Biosorbent for the Removal of Recalcitrant Dyes from Water

Author:

Diaz-Uribe Carlos,Angulo Barni,Patiño Karen,Hernández Vincent,Vallejo WilliamORCID,Gallego-Cartagena Euler,Romero Bohórquez Arnold R.ORCID,Zarate Ximena,Schott Eduardo

Abstract

The accumulation of cyanobacteria produced due to eutrophication processes and the increment of different pollutants in water as a result of industrial processes affects aquatic environments such as the ocean, rivers, and swamps. In this work, cyanobacterial biomass was used as a biosorbent for the removal of a commercial dye, methylene blue (MB). Thus, MB was removed from biomass obtained from cyanobacterial samples collected from the swamp located in the Colombian Caribbean. Spectroscopical techniques such as FTIR, SEM, EDX measurements were used for the physico-chemical characterization of the bio-adsorbent material. Furthermore, we present the effect of various adsorption parameters such as pH, MB dose, time, and adsorbent concentration on the adsorbent equilibrium process. Three different isotherm models were used to model the MB adsorption on biomass. The functional groups identified on biomass suggest that these models are suitable for the characterization of the sorption of cationic dyes on the surfaces of the biomass; in addition, an SEM assay showed the heterogeneous surface of the biomass’ morphology. The equilibrium tests suggested a multilayer type adsorption of MB on the biomass surface. The kinetics results show that a pseudo-second order kinetic model was suitable to describe the MB adsorption on the biomass surface. Finally, the herein obtained results give an alternative to resolve the eutrophication problems generated by cyanobacterial growth in the swamp “Ciénaga de Malambo”.

Funder

Universidad del Atlántico

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3