Globally vs. Locally Trained Machine Learning Models for Landslide Detection: A Case Study of a Glacial Landscape

Author:

Ganerød Alexandra Jarna12,Lindsay Erin3,Fredin Ola4ORCID,Myrvoll Tor-Andre5,Nordal Steinar3,Rød Jan Ketil1ORCID

Affiliation:

1. Department of Geography, Norwegian University of Science and Technology, 7049 Trondheim, Norway

2. Geological Survey of Norway (NGU), 7040 Trondheim, Norway

3. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway

4. Department of Geoscience and Petroleum, Norwegian University of Science and Technology, 7034 Trondheim, Norway

5. Department of Electronic Systems, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Abstract

Landslide risk mitigation is limited by data scarcity; however, this could be improved using continuous landslide detection systems. To investigate which image types and machine learning models are most useful for landslide detection in a Norwegian setting, we compared the performance of five different machine learning models, for the Jølster case study (30 July 2019), in Western Norway. These included three globally pre-trained models; (i) the continuous change detection and classification (CCDC) algorithm, (ii) a combined k-means clustering and random forest classification model, and (iii) a convolutional neural network (CNN), and two locally trained models, including; (iv) classification and regression Trees and (v) a U-net CNN model. Images used included Sentinel-1, Sentinel-2, as well as digital elevation model (DEM) and slope. The globally trained models performed poorly in shadowed areas and were all outperformed by the locally trained models. A maximum Matthew’s correlation coefficient (MCC) score of 89% was achieved with a CNN U-net deep learning model, using combined Sentinel-1 and -2 images as input. This is one of the first attempts to apply deep learning to detect landslides with both Sentinel-1 and -2 images. Using Sentinel-1 images only, the locally-trained deep-learning model significantly outperformed the conventional machine learning model. These findings contribute to developing a national continuous monitoring system for landslides.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3