Landslide Susceptibility Mapping Based on Deep Learning Algorithms Using Information Value Analysis Optimization

Author:

Ji Junjie123ORCID,Zhou Yongzhang123ORCID,Cheng Qiuming1,Jiang Shoujun4,Liu Shiting5

Affiliation:

1. School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519000, China

2. Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Survey, Guangzhou 510275, China

3. School of Earth Sciences and Engineering, Center for Earth Environment & Resources, Sun Yat-sen University, Guangzhou 510275, China

4. Guangdong Geological Survey Institute, Guangzhou 510275, China

5. The Sixth Geological Team of Guangdong Geological Bureau, Jiangmen 529000, China

Abstract

Selecting samples with non-landslide attributes significantly impacts the deep-learning modeling of landslide susceptibility mapping. This study presents a method of information value analysis in order to optimize the selection of negative samples used for machine learning. Recurrent neural network (RNN) has a memory function, so when using an RNN for landslide susceptibility mapping purposes, the input order of the landslide-influencing factors affects the resulting quality of the model. The information value analysis calculates the landslide-influencing factors, determines the input order of data based on the importance of any specific factor in determining the landslide susceptibility, and improves the prediction potential of recurrent neural networks. The simple recurrent unit (SRU), a newly proposed variant of the recurrent neural network, is characterized by possessing a faster processing speed and currently has less application history in landslide susceptibility mapping. This study used recurrent neural networks optimized by information value analysis for landslide susceptibility mapping in Xinhui District, Jiangmen City, Guangdong Province, China. Four models were constructed: the RNN model with optimized negative sample selection, the SRU model with optimized negative sample selection, the RNN model, and the SRU model. The results show that the RNN model with optimized negative sample selection has the best performance in terms of AUC value (0.9280), followed by the SRU model with optimized negative sample selection (0.9057), the RNN model (0.7277), and the SRU model (0.6355). In addition, several objective measures of accuracy (0.8598), recall (0.8302), F1 score (0.8544), Matthews correlation coefficient (0.7206), and the receiver operating characteristic also show that the RNN model performs the best. Therefore, the information value analysis can be used to optimize negative sample selection in landslide sensitivity mapping in order to improve the model’s performance; second, SRU is a weaker method than RNN in terms of model performance.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key R&D Project

China National Key R&D Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3