Enhanced Absence Sampling Technique for Data-Driven Landslide Susceptibility Mapping: A Case Study in Songyang County, China

Author:

Fu Zijin1ORCID,Wang Fawu12,Dou Jie3ORCID,Nam Kounghoon1,Ma Hao1ORCID

Affiliation:

1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China

3. Badong National Observation and Research Station of Geohazards, China University of Geosciences-Wuhan, Wuhan 430074, China

Abstract

Accurate prediction of landslide susceptibility relies on effectively handling absence samples in data-driven models. This study investigates the influence of different absence sampling methods, including buffer control sampling (BCS), controlled target space exteriorization sampling (CTSES), information value (IV), and mini-batch k-medoids (MBKM), on landslide susceptibility mapping in Songyang County, China, using support vector machines and random forest algorithms. Various evaluation metrics are employed to compare the efficacy of these sampling methods for susceptibility zoning. The results demonstrate that CTSES, IV, and MBKM methods exhibit an expansion of the high susceptibility region (maximum susceptibility mean value reaching 0.87) and divergence in the susceptibility index when extreme absence samples are present, with MBKM showing a comparative advantage (lower susceptibility mean value) compared to the IV model. Building on the strengths of different sampling methods, a novel integrative sampling approach that incorporates multiple existing methods is proposed. The integrative sampling can mitigate negative effects caused by extreme absence samples (susceptibility mean value is approximately 0.5 in the same extreme samples and presence-absence ratio) and obtain significantly better prediction results (AUC = 0.92, KC = 0.73, POA = 2.46 in the best model). Additionally, the mean level of susceptibility is heavily influenced by the proportion of absent samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3